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The rearrangement of allylic trichloroacetimidates to allylic
trichloroacetamidesl(— 2), first reported in 1974 s the preferred
method for converting allylic alcohols to transposed allylic amines
and their derivatived This transformation can be accomplished at

elevated temperatures or at room temperature in the presence of

catalysts such as Hg(OCOgF or PdCh complexes. Attempts

to date to develop asymmetric Pd(ll) catalysts for the rearrangement

of prochiral allylic trichloroacetimidates have been unsuccessful,
being plagued by competing elimination reactions, slow reaction
rates, and low enantioselectiviti€$he first two of these difficulties
likely arise from competitive complexation of the small, basic
trichloroacetimidate nitrogen to palladiun€Consequently, success
in developing asymmetric Pd(ll) catalysts for allylic imidate
rearrangements has been realized only Wthrylimidates 8 —
4).4% As coordination of an imidate nitrogen to a neutral palladium

R? R2
RLNJ\O Pd(ll) RlN/&O )
R/\\) R)\/
1:R'=H, R?=CCl3 2:R'=H, R?=CCly
3:R'=aryl, R?= Ph, H or CF3 4:R'=aryl, R? = Ph, H or CF3

center should be less favorable than to a cationic Pd(Il) complex,
typically employed in asymmetric allylic imidate rearrangeméfits,
the recent discovery that chloride-bridged dirBéis an excellent
catalyst for asymmetric rearrangementN+{p-methoxyphenyl)-
trifluoroacetimidate® suggested that CGFCI (5) might also
catalyze allylic rearrangement of synthetically more important allylic
trichloroacetimidates. In this Communication, we report thag
indeed an outstanding catalyst for transforming prochigia(lylic
trichloroacetimidates into allylic trichloroacetamides of high enan-
tiopurity.
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The trichloroacetimidates employed in this study were prepared
in 68—99% yield by DBU-catalyzed addition of allylic alcohols to
trichloroacetonitrilé Table 1 summarizes results obtained from
catalytic rearrangements of nine representative primary allylic
trichloroacetimidates with 5 mol % CGRCI (5) in CH,CI, (0.6
M) for 18 h. (E)-Allylic trichloroacetimidates containing unbranched

Table 1. Enantioselective Formation of Allylic Trichloroacetamides
2 from (E)- and (2)-Allylic Trichloroacetimidates 12

imidate amide
entry cpds R E/lZ temp (°C) yield (%)° % ee®/conf

1 a n-Pr E rt 80 945
2 a n-Pr E 38°C 99 956
3 b n-Pr z 38°C 17 71R
4 c i-Bu E 38°C 95 965
5 c i-Bu E 38°cCd 92 988
6 d i-Bu A 38°C 8 73R
7 e Me E rt 85 925
8 f Cy E 38°Ce 82 965
9 g CHCH,Ph E rt 83 965
10 g CHCH,Ph E 38°C 93 936

11 h Ph E rt 13 nd

i t-Bu E 38°C 7 nd

aConditions: 5 mol % catalyss, CH.Cl, (0.6 M), 18 h.P Duplicate
experiments £3%). ¢ Determined by HPLC analysis of duplicate experi-
ments §2%). 91 mol %5, CH,Cl, (1.2 M). € CH,Cl, (1.0 M). f nd = not
determined.

92—96% ee and 80685% yield (entries 1, 7, and 9); at 38, yields

of these rearrangements were improved—-{99%) with little or

no erosion of enantioselection (entries 2 and 1@&)-Allylic
trichloroacetimidates containingBu or cyclohexyl C3 substituents
(1cand1f) rearranged slowly at room temperature; however, at 38
°C these precursors provided the correspond8yllylic trichlo-
roacetamide@c and2f in 96% ee and high yield (entries 4 and 8).
When the substrate concentration was increased to 1.2 M, a catalyst
loading of only 1 mol % could be employed, as demonstrated by
the formation of2c in 92% yield and 98% ee (entry 5). The
rearrangement was slowed drastically when R 88 (entry 12).
Also unreactive wereZ)-allylic trichloroacetimidates which gave
the correspondingR)-allylic trichloroacetamide® in poor yield

and moderate enantioselectivity (entries 3 and 6). One additional
limitation was identified: E)-cinnamyl trichloroacetimidatelh
provided amide2h in low yield with the major product resulting
from formal [1,3]-rearrangement (entry 171).

The rearrangement of a series Bj-allylic trichloroacetimidates
containing various Lewis basic substituents was examined to explore
the functional group compatibility of the CORCI-catalyzed
reaction (Table 2). Oxygen functionality (including ester, acetal,
ketone, and silyl ether) was well tolerated, with allylic trichloro-
acetamide products being formed in-926% ee and excellent yield
(entries 1-7). Trichloroacetimidatéd.o containing a free hydroxyl
group rearranged in high yield in the presence of €@P(entry
8); however, enantioselection in this case was lower (80% ee).
Nitrogen functionality proved more problematic. Substrae
containing carbamate functionality rearranged cleanly to 8pe
in 95% ee (96% yield at 38C), as did trichloroacetimidatéq

R substituents at C3 rearranged within 18 h at room temperature containing a distal tertiary amine to provi@eg in 97% ee (82%

to provide the corresponding)allylic trichloroacetamideg in
12412 = J. AM. CHEM. SOC. 2003, 125, 12412—12413

yield at 23°C). However, the allylic rearrangement was prevented,
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Table 2. Enantioselective Synthesis of Allylic Trichloroacetamides
2 from (E)-Allylic Trichloroacetimidates 1 Containing Lewis Basic
Functionality@

entry cpds R temp (°C) yield (%)° % ee®/conf
1 j (CHy)30AC rt 74 926
2 j (CHy)30AC 38°C 97 926
3 k (CHp).,COMe rt 73 958
4 | (CHp)3(OCH,CH0O) 1t 85 956
5 m (CH),COMe rt 80 94/S
6 m (CH,).COMe 38°C 98 9%/S
7 n CHOTBDMS 38°C 98 96R
8 o] CHOH rt 84 80R
9 p (CH)sNBn(Boc) rt 87 958

10 p (CH)sNBN(Boc) 38°C 96 958

1 q (CH)9NBN; rt 82 978

aConditions: 5 mol %6, CH,Cl (0.6 M), 18 h.P Duplicate experiments
(£3%). ¢ Determined by HPLC analysis of duplicate experimest2%).
d Determined by chiral GC analysis of duplicate experimest29).

at least at 38C, by tertiary amine functionality at C6, secondary
amine functionality at either C6 or C12, or a thioether substituent
at C6 of the E)-2-alkenyl trichloroacetimidate starting material.
As only (E)-allylic trichloroacetimidates are viable substrates in
the COP-Cl-catalyzed allylic rearrangemereantCOP—CI (ent
5) was prepared to access the opposite enantiomer of allylic
trichloroacetamide product8.Thus, rearrangement of crotyl tri-
chloroacetimidatele and 4-tert-butyldimethylsiloxy)-2-butenyl-

alcohols are readily available, their trichloroacetimidate derivatives
are prepared in high yield from commercially available trichloro-
acetonitrile, oxidative removal of ad-aryl protecting group from

the allylic amide product is not required, and the trichloroacetamide
group can be easily cleaved or transformed to other functional
arrayst’ this catalytic asymmetric method for preparing chiral allylic
amines and congeners should find considerable use in enantio-
selective synthesis.
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Note Added after ASAP.In the version published on the Web
9/19/2003, the structure faen, 2k, 2f, and 8 in eqs 2-4 were
incorrect. The version published 9/22/2003 and the print version
are correct.

Supporting Information Available: Representative experimental
procedures for trichloroacetimidate preparation and catalytic rearrange-
ment, copies of HPLC and GC traces used to determine enantiopurity,
and copies ofH and**C NMR spectra for all new compounds (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.

trichloroacetimidate Xn) with ent5 using conditions reported for
these substrates in Tables 1 and 2, respectively, provigeag
and R®)-2n in 92% ee (83% yield) and 96% ee (98% yield).

To illustrate the potential utility of enantioenriched allylic
trichloroacetamide products, and establish the absolute configura-
tions of2n and2k, the following transformations were carried out.
Cleavage of the silyl protecting group i followed by tosylation
provided R)-N-tosyl-4-vinyloxazolidinoné of high enantiopurity
(eq 2)1* The GABA aminotransaminase inhibito®)fvigabatrin
(7)*2 was readily prepared fror2k by acidic cleavage of the
trichloroacetyl and ester groupsTo illustrate the use of allylic
trichloroacetamide products for enantioselective synthesis of un-
natural a-amino acids, the double bond &f was cleaved with
ozone in basic methariéito deliver the differentially protectedy-
a-amino esteB with no detectable loss of enantiomeric purity$

o)
NHCOCCl; 1, TBAF, THF PN
TBDMSO._A_~ Q NT,j )
2. TsCl, NaH —
n (96% ee) pyr., DMF 6
(67%)  [0]?"p = +32.9 (0.2, CHCl,)
MeOZC/\/\/ 100 °C _OZCW
2k (95% ee) (75%) (S)-Vigabatrin (7)
[a]Pp = +12.4 (0.16, H,0)
NHCOCCl; ~ Og, —78 °C NHCOCCly
N : 4
NaOH coMe ¥
CHgCIg/MeOH
2f (96% ee) (58%) 8 (96% ee)

In conclusion, COR-CI (5) catalyzes the rearrangement &j{
allylic trichloroacetimidates to provide transposed allylic trichloro-
acetamides in high yield and 9®8% ee, thus providing the first
truly practical method for transforming prochiral allylic alcohols
to enantioenriched allylic amines and their analogues E)sllylic
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